РАБОЧАЯ ПРОГРАММА

Дисциплина: ОУДБ.08 Химия

Специальность: 23.01.17 Мастер по ремонту и

обслуживанию автомобилей

Рассмотрена	Утверждаю:
ПРЕДМЕТНОЙ (ЦИКЛОВОЙ)	Зам.директора по ТО
КОМИССИЕЙ	Е.В. Иштулина
<u>ПЦК « Общеобразовательных</u>	«ОД» <u>12.</u> 2021 г.
<u>дисциплин</u> »	Методист:
	Е.Н.Смирнова
ПРЕДСЕДАТЕЛЬ: 3,0 Карпиюк	« »2021г.
Alleful -	
Протокол №	
от « Pl » 2021 г.	

Рабочая программа учебной дисциплины ОУДБ.08 «Химия» разработана для специальности СПО 23.01.17 «Мастер по ремонту и обслуживанию автомобилей» на основе Федерального государственного образовательного стандарта (далее – Φ ГОС) среднего общего образования с учетом Примерной основной образовательной программы среднего общего образования.

Организация разработчик: ГБПОУ «ЮТТ»

Разработчик: Хажимуратова Зифа Илдусовна, преподаватель

химии\биологии Кан

СОДЕРЖАНИЕ

	стр.
1. Пояснительная записка	4
2. Паспорт рабочей программы учебной дисциплины	5
3. Планируемые результаты освоения учебной дисциплины	6
4. Содержание учебной дисциплины	
5. Тематическое планирование учебной дисциплины	
6. Тематический план и содержание учебной дисциплины	
7. Условия реализации учебной дисциплины	
8. Контроль и оценка результатов освоения учебной дисциплины	19

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа общеобразовательной учебной дисциплины «Химия» предназначена для изучения в профессиональных образовательных организациях, реализующих образовательную программу среднего общего образования в пределах освоения основной профессиональной образовательной программы (ОПОП) СПО на базе основного общего образования при подготовке квалифицированных рабочих, служащих и специалистов среднего звена.

Программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Химия», и в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии или специальности среднего профессионального образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17 марта 2015 г. № 06-259).

Содержание программы учебной дисциплины «Химия» направлено на достижение следующих **целей**:

- формирование у студентов умения оценивать значимость химического знания для каждого человека;
- формирование у студентов целостного представления о мире и роли химии в создании современной естественно-научной картины мира; умения объяснять объекты и процессы окружающей действительности: природной, социальной, культурной, технической среды, используя для этого химические знания;
- развитие у студентов умений различать факты и оценки, сравнивать оценочные выводы, формулировать и обосновывать собственную позицию;
- приобретение студентами опыта разнообразной деятельности, познания и самопознания; ключевых навыков, имеющих универсальное значение для различных видов деятельности (навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков измерений, сотрудничества, безопасного обращения с веществами в повседневной жизни).

2. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ХИМИЯ

2.1 Область применения программы

Программа учебной дисциплины «Химия» предназначена для изучения в профессиональных образовательных организациях, реализующих образовательную программу среднего общего образования в пределах освоения основной профессиональной образовательной программы СПО по профессии 23.01.17 «Мастер по ремонту и обслуживанию автомобилей» на базе основного общего образования при подготовке квалифицированных рабочих.

2.2 Место дисциплины в структуре основной профессиональной образовательной программы:

Учебная дисциплина «Химия» изучается в общеобразовательном цикле учебного плана ОПОП СПО на базе основного общего образования с получением среднего общего образования (ППССЗ).

2.3 Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов	
Максимальная учебная нагрузка (всего)	80	
Обязательная аудиторная учебная нагрузка (в т.ч)	80	
теоретических занятий	64	
практических занятий	16	
Итоговая аттестация в форме в форме зачета		

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ «ХИМИЯ»

Освоение содержания учебной дисциплины Химия обеспечивает достижение студентами следующих результатов:

личностных:

- чувство гордости и уважения к истории и достижениям отечественной химической науки; химически грамотное поведение в профессиональной деятельности и в быту при обращении с химическими веществами, материалами и процессами;
- готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности и объективное осознание роли химических компетенций в этом;
- умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

метапредметных:

- использование различных видов познавательной деятельности и основных интеллектуальных операций (постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов), для решения поставленной задачи, применение основных методов познания (наблюдения, научного эксперимента) для изучения различных сторон химических объектов и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;
- использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;

предметных:

- сформированность представлений о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими химическими понятиями, теориями, законами и закономерностями; уверенное пользование химической терминологией и символикой;
- владение основными методами научного познания, используемыми в химии: наблюдением, описанием, измерением, экспериментом;
- умение обрабатывать, объяснять результаты проведенных опытов и делать выводы; готовность и способность применять методы познания при решении практических задач;
- сформированность умения давать количественные оценки и производить расчеты по химическим формулам и уравнениям;
- владение правилами техники безопасности при использовании химических веществ;
- сформированность собственной позиции по отношению к химической информации, получаемой из разных источников.

4. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Введение

Научные методы познания веществ и химических явлений. Роль эксперимента и теории в химии. Моделирование химических процессов. Значение химии при освоении специальностей СПО.

1. Основные понятия и законы химии

Основные понятия химии. Вещество. Атом. Молекула. Химический элемент. Аллотропия. Простые и сложные вещества. Качественный и количественный состав веществ. Химические знаки и формулы. Относительные атомная и молекулярная массы. Количество вещества.

Основные законы химии. Закон сохранения массы веществ. Закон постоянства состава веществ молекулярной структуры. Закон Авогадро. Расчетные задачи на нахождение относительной молекулярной массы, определение массовой доли химических элементов в сложном веществе.

Демонстрации

Модели атомов химических элементов.

Модели молекул простых и сложных веществ (шаростержневые).

Коллекция простых и сложных веществ.

Профильные и профессионально значимые элементы содержания. Аллотропные модификации углерода (алмаз, графит), кислорода (кислород, озон), олова (серое и белое олово). Понятие о химической технологии, биотехнологии и нанотехнологии.

2. Периодический закон и Периодическая система химических элементов Д. И. Менделеева и строение атома

Периодический закон Д. И. Менделеева. Открытие Д. И. Менделеевым Периодического закона. Периодический закон в формулировке Д. И. Менделеева. Периодическая таблица химических элементов — графическое отображение периодического закона. Структура периодической таблицы: периоды (малые и большие), группы (главная и побочная).

Строение атома и Периодический закон Д. И. Менделеева. Атом — сложная частица. Ядро (протоны и нейтроны) и электронная оболочка. Изотопы. Строение электронных оболочек атомов элементов малых периодов. Особенности строения электронных оболочек атомов элементов больших периодов (переходных элементов).

Понятие об орбиталях. s-, p- и d-орбитали. Электронные конфигурации атомов химических элементов.

Современная формулировка Периодического закона. Значение Периодического закона и Периодической системы химических элементов Д. И. Менделеева для развития науки и понимания химической картины мира.

Демонстрации

Различные формы Периодической системы химических элементов Д. И. Менделеева.

Профильные и профессионально значимые элементы содержания. Радиоактивность. Использование радиоактивных изотопов в технических целях. Рентгеновское излучение и его использование в технике и медицине. Моделирование как метод прогнозирования ситуации на производстве.

3. Строение вещества

Ионная химическая связь. Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь как связь между катионами и анионами за счет электростатического притяжения. Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки. Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки.

Ковалентная химическая связь. Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи. Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками.

Металлическая связь. Металлическая кристаллическая решетка и металлическая

химическая связь. Физические свойства металлов.

Агрегатные состояния веществ и водородная связь. Твердое, жидкое и газообразное состояния веществ. Переход вещества из одного агрегатного состояния в другое. Водородная связь.

Чистые вещества и смеси. Понятие о смеси веществ. Гомогенные и гетерогенные смеси. Состав смесей: объемная и массовая доли компонентов смеси, массовая доля примесей.

Дисперсные системы. Понятие о дисперсной системе. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем. Понятие о коллоидных системах. Коагуляция. Синерезис. Эффект Тиндаля.

Демонстрации

Модель кристаллической решетки хлорида натрия.

Образцы минералов с ионной кристаллической решеткой: кальцита, галита.

Модели кристаллических решеток «сухого льда» (или йода), алмаза, графита (или кварца). Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей.

4. Вода. Растворы. Электролитическая диссоциация

Вода. Растворы. Растворение. Вода как растворитель. Растворимость веществ. Насыщенные, ненасыщенные, пересыщенные растворы. Зависимость растворимости газов, жидкостей и твердых веществ от различных факторов. Массовая доля растворенного вещества.

Электролитическая диссоциация. Электролиты и неэлектроиты. Электролитическая диссоциации. Механизмы электролитической диссоциации. Степень электролитической диссоциации. Сильные и слабые электролиты. Основные положения теории электролитической диссоциации. Кислоты, основания и соли как электролиты.

Демонстрации

Растворимость веществ в воде.

Образцы кристаллогидратов.

Зависимость степени электролитической диссоциации уксусной кислоты от разбавления раствора.

Приготовление жесткой воды и устранение ее жесткости.

Образцы минеральных вод различного назначения.

Практическое занятие

Приготовление раствора заданной концентрации.

Профильные и профессионально значимые элементы содержания. Тепловые эффекты при растворении. Решение задач на массовую долю растворенного вещества. Применение воды в технических целях. Жесткость воды и способы ее устранения. Минеральные воды.

5. Классификация неорганических соединений и их свойства

Кислоты и их свойства. Кислоты как электролиты, их классификация по различным признакам. Химические свойства кислот в свете теории электролитической диссоциации. Особенности взаимодействия концентрированной серной и азотной кислот с металлами. Основные способы получения кислоты.

Основания и их свойства. Основания как электролиты, их классификация по различным признакам. Химические свойства оснований в свете теории электролитической диссоциации. Разложение нерастворимых в воде оснований. Основные способы получения оснований.

Соли и их свойства. Соли как электролиты. Соли средние, кислые и основные. Химические свойства солей в свете теории электролитической диссоциации. Способы получения солей. Гидролиз солей.

Демонстрации

Горение фосфора и растворение продукта горения в воде.

Получение и свойства амфотерного гидроксида.

Практические работы

Свойства кислот

Свойства оснований

Свойства солей

Профильные и профессионально значимые элементы содержания. Правила разбавления серной кислоты. Использование серной кислоты в промышленности. Едкие щелочи, их использование в промышленности. Гашеная и негашеная известь, их применение в строительстве. Гипс и алебастр, гипсование.

Понятие о рН раствора. Кислотная, щелочная, нейтральная среда растворов.

6. Химические реакции

Классификация химических реакций. Реакции соединения, разложения, замещения, обмена. Каталитические реакции. Обратимые и необратимые реакции.

Гомогенные и гетерогенные реакции. Экзотермические и эндотермические реакции.

Тепловой эффект химических реакций. Термохимические уравнения.

Окислительно-восстановительные реакции. Степень окисления. Окислитель и восстановление. Восстановитель и окисление. Метод электронного баланса для составления уравнений окислительно-восстановительных реакций.

Скорость химических реакций. Понятие о скорости химических реакций. Зависимость скорости химических реакций от различных факторов: природы реагирующих веществ, их концентрации, температуры, поверхности соприкосновения и использования катализаторов.

Обратимость химических реакций. Обратимые и необратимые реакции. Химическое равновесие и способы его смещения.

Практические работы

Окислительно-восстановительные реакции.

Зависимость скорости реакции от природы реагирующих веществ, от различной концентрации, температуры, от присутствия катализатора.

7. Металлы и неметаллы

Металлы. Особенности строения атомов и кристаллов. Физические свойства металлов. Классификация металлов по различным признакам. Химические свойства металлов. Электрохимический ряд напряжений металлов. Металлотермия. Общие способы получения металлов. Понятие о металлургии. Пирометаллургия, гидрометаллургия и электрометаллургия. Сплавы черные и цветные.

Неметаллы. Особенности строения атомов. Неметаллы — простые вещества. Зависимость свойств галогенов от их положения в периодической системе. Окислительные и восстановительные свойства неметаллов в зависимости от их положения в ряду электроотрицательности.

Демонстрации

Коллекция металлов.

Горение металлов.

Коллекция неметаллов.

Практические занятия

Свойства металлов

Получение, собирание и распознавание газов.

Решение экспериментальных задач.

Профильные и профессионально значимые элементы содержания. Коррозия металлов. Зависимость скорости коррозии от условий окружающей среды. Способы защиты металлов от коррозии. Производство чугуна и стали.

Получение неметаллов фракционной перегонкой жидкого воздуха и электролизом растворов или расплавов электролитов. Силикатная промышленность. Производство серной кислоты.

8. Основные понятия органической химии и теория строения органических соединений

Предмет органической химии. Природные, искусственные и синтетические органические вещества. Сравнение органических веществ с неорганическими.

Валентность. Химическое строение как порядок соединения атомов в молекулы по валентности.

Теория строения органических соединений А. М. Бутлерова. Основные положения теории химического строения. Изомерия и изомеры. Химические формулы и модели молекул в органической химии.

Классификация органических веществ. Классификация веществ по строению углеродного скелета и наличию функциональных групп. Гомологи и гомология. Начала номенклатуры IUPAC.

Классификация органической реакций В химии. Реакции присоединения гидратации). (гидрирования, галогенирования, гидрогалогенирования, Реакции отщепления (дегидрирования, дегидрогалогенирования, дегидратации). Реакции замещения. Реакции изомеризации.

Демонстрации

Модели молекул гомологов и изомеров органических соединений.

Качественное обнаружение углерода. водорода в молекулах органических соединений.

9. Углеводороды и их природные источники

Алканы. Алканы: гомологический ряд, изомерия и номенклатура алканов. Химические свойства алканов (метана, этана): горение, замещение, разложение, дегидрирование. Применение алканов на основе свойств.

Алкены. Этилен, его получение (дегидрированием этана, деполимеризацией полиэтилена). Гомологический ряд, изомерия, номенклатура алкенов. Химические свойства этилена: горение, качественные реакции (обесцвечивание бромной воды и раствора перманганата калия), гидратация, полимеризация. Применение этилена на основе свойств.

Диены и каучуки. Понятие о диенах как углеводородах с двумя двойными связями. Химические свойства бутадиена-1,3 и изопрена: обесцвечивание бромной воды и полимеризация в каучуки. Натуральный и синтетические каучуки. Резина.

Алкины. Ацетилен. Химические свойства ацетилена: горение, обесцвечивание бромной воды, присоединений хлороводорода и гидратация. Применение ацетилена на основе свойств. Межклассовая изомерия с алкадиенами.

Арены. Бензол. Химические свойства бензола: горение, реакции замещения (галогенирование. нитрование). Применение бензола на основе свойств.

Природные источники углеводородов. Природный газ: состав, применение в качестве топлива.

Нефть. Состав и переработка нефти. Перегонка нефти. Нефтепродукты.

Демонстрации

Горение метана, этилена, ацетилена.

Отношение метана, этилена, ацетилена и бензола к растворам перманганата калия и бромной воде.

Получение этилена реакцией дегидратации этанола, ацетилена — гидролизом карбида кальция.

Коллекция образцов нефти и нефтепродуктов. Коллекция «Каменный уголь и продукция коксохимического производства».

Практические работы

Получение и свойства алканов, алкенов и алкинов.

Профильные и профессионально значимые элементы содержания. Правило В. В. Марковникова. Классификация и назначение каучуков. Классификация и назначение резин. Вулканизация каучука.

Получение ацетилена пиролизом метана и карбидным способом. Реакция полимеризации винилхлорида. Поливинилхлорид и его применение. Тримеризация ацетилена в бензол.

Восстановление нитробензола в анилин. Гомологический ряд аренов. Толуол. Нитрование толуола. Тротил.

Основные направления промышленной переработки природного газа.

Попутный нефтяной газ, его переработка.

Процессы промышленной переработки нефти: крекинг, риформинг. Октановое число бензинов и циановое число дизельного топлива.

10. Кислородсодержащие органические соединения

Спирты. Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Понятие о предельных одноатомных спиртах.

Химические свойства этанола: взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид. Применение этанола на основе свойств.

Алкоголизм, его последствия для организма человека и предупреждение.

Глицерин как представитель многоатомных спиртов. Качественная реакция на многоатомные спирты. Применение глицерина.

Фенол. Физические и химические свойства фенола. Взаимное влияние атомов в молекуле фенола: взаимодействие с гидроксидом натрия и азотной кислотой. Применение фенола на основе свойств.

Альдегиды. Понятие об альдегидах. Альдегидная группа как функциональная.

Формальдегид и его свойства: окисление в соответствующую кислоту, восстановление в соответствующий спирт. Получение альдегидов окислением соответствующих спиртов. Применение формальдегида на основе его свойств.

Карбоновые кислоты. Понятие о карбоновых кислотах. Карбоксильная группа как функциональная. Гомологический ряд предельных одноосновных карбоновых кислот. Получение карбоновых кислот окислением альдегидов. Химические свойства уксусной кислоты: общие свойства с минеральными кислотами и реакция этерификации. Применение уксусной кислоты на основе свойств. Высшие жирные кислоты на примере пальмитиновой и стеариновой.

Сложные эфиры и жиры. Получение сложных эфиров реакцией этерификации. Сложные эфиры в природе, их значение. Применение сложных эфиров на основе свойств.

Жиры как сложные эфиры. Классификация жиров. Химические свойства жиров: гидролиз и гидрирование жидких жиров. Применение жиров на основе свойств. Мыла.

Углеводы. Углеводы, их классификация: моносахариды (глюкоза, фруктоза),дисахариды (сахароза) и полисахариды (крахмал и целлюлоза).

Глюкоза — вещество с двойственной функцией — альдегидоспирт. Химические свойства глюкозы: окисление в глюконовую кислоту, восстановление в сорбит, спиртовое брожение. Применение глюкозы на основе свойств.

Значение углеводов в живой природе и жизни человека. Понятие о реакциях поликонденсации и гидролиза на примере взаимопревращений: глюкоза ↔ полисахарид.

Демонстрации

Окисление спирта в альдегид.

Качественные реакции на многоатомные спирты.

Реакция серебряного зеркала альдегидов и глюкозы.

Качественная реакция на крахмал. Коллекция эфирных масел.

Практические работы

Свойства спиртов

Свойства альдегидов

Свойства уксусной кислоты

Свойства глюкозы и Качественная реакция на крахмал.

Профильные и профессионально значимые элементы содержания. Метиловый спирт и его использование в качестве химического сырья. Токсичность метанола и правила техники безопасности при работе с ним. Этиленгликоль и его применение. Токсичность этиленгликоля и правила техники безопасности при работе с ним. Получение фенола из продуктов коксохимического производства и из бензола. Поликонденсация формальдегида с фенолом в фенолоформальдегидную смолу.

Ацетальдегид. Понятие о кетонах на примере ацетона. Применение ацетона в технике и промышленности.

Многообразие карбоновых кислот (щавелевой кислоты как двухосновной, акриловой кислоты как непредельной, бензойной кислоты как ароматической).

Пленкообразующие масла. Замена жиров в технике непищевым сырьем. Синтетические моющие средства.

Молочнокислое брожение глюкозы. Кисломолочные продукты. Силосование кормов. Нитрование целлюлозы. Пироксилин.

11. Азотсодержащие органические соединения. Полимеры

Амины. Понятие об аминах. Алифатические амины, их классификация и номенклатура. Анилин как органическое основание. Получение анилина из нитробензола. Применение анилина на основе свойств.

Аминокислоты. Аминокислоты как амфотерные дифункциональные органические соединения. Химические свойства аминокислот: взаимодействие с щелочами, кислотами и друг с другом (реакция поликонденсации). Пептидная связь и полипептиды. Применение аминокислот на основе свойств.

Белки. Первичная, вторичная, третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз, цветные реакции. Биологические функции белков.

Полимеры.

Пластмассы. Получение полимеров реакцией полимеризации и поликонденсации.

Термопластичные и термореактивные пластмассы. Представители пластмасс.

Волокна, их классификация. Получение волокон. Отдельные представители химических волокон.

Демонстрации

Цветные реакции белков.

Горение птичьего пера и шерстяной нити.

Практические занятия

Амины. Аминокислоты. Качественные реакции на белки

Профильные и профессионально значимые элементы содержания. Аминокапроновая кислота. Капрон как представитель полиамидных волокон. Использование гидролиза белков в промышленности. Поливинилхлорид, политетрафторэтилен (тефлон). Фенолоформальдегидные пластмассы. Целлулоид. Промышленное производство химических волокон.

5. ТЕМАТИЧЕСКИЙ ПЛАН

	Наименование тем	Количество часов		
	Transierrobative Tem	Всег Из них		X
		о рабо	Теория	лпз
		Т		
	Введение	2	2	
Раздел	: Общая и неорганическая химия.	78	64	16
Тема 1	Основные понятия и законы химии.	6	6	
Тема 2	Периодический закон и Периодическая система химических элементов Д. И. Менделеева и строение атома.	8	8	
Тема 3	Строение вещества.	10	10	
Тема 4	Вода. Растворы. Электролитическая диссоциация.	8	6	2
Тема 5	Классификация неорганических соединений и их свойства.	14	10	4
Тема 6	Химические реакции.	16	10	6
Тема 7	Металлы и неметаллы.	16	12	4
Раздел	Органическая химия.	34 26		8
Тема 8	Основные понятия органической химии и теория строения органических соединений.	4	4	
Тема 9	Углеводороды и их природные источники.	12	10	2
Тема 10	Кислородсодержащие органические соединения.	10	8	2
Тема 11	Азотсодержащие органические соединения. Полимеры.	6	4	4
	Итого	114	88	22

6.ТЕМАТИЧЕСКИЙ ПЛАН И СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА ДИСЦИПЛИНЫ

Наименование разделов и тем	Содержание учебного материала и практические занятия	Объем часов	Уровень усвоения
1	2	3	4
	I курс	80	
	1 семестр	34	
	Введение	2	1
	Раздел 1. Общая и неорганическая химия.	70	
Тема 1. Основные понятия	Содержание учебного материала:	6	
и законы химии.	Основные понятия химии.	4	2
	Основные законы химии.	2	2
Тема 2. Периодический	Содержание учебного материала:	8	
закон и Периодическая	Периодический закон Д.И.Менделеева.	4	2
система химических элементов Д. И. Менделеева	Строение атома. Изотопы. Понятие радиоактивности.	2	2
и строение атома.	Значение периодического закона. Контрольная работа.	2	3
Тема 3. Строение вещества.	Содержание учебного материала:	10	
_	Ковалентная химическая связь.	2	2
	Ионная химическая связь.	2	2
	Металлическая и водородная химическая связь.	2	2
	Дисперсные системы. Классификация дисперсных систем.	2	2
	Контрольная работа по разделу.	2	3
Тема 4. Вода. Растворы.	Содержание учебного материала:	8	
Электролитическая	Растворы. Растворимость веществ.	2	2

диссоциация.	Электролиты и неэлектролиты.	2	2
	Электролитическая диссоциация.	2	2
	Практическая работа: Приготовление раствора заданной концентрации.	2	3
	2 семестр	46	
Тема 5. Классификация	Содержание учебного материала:	14	
неорганических соединений их свойства.	Кислоты, классификация и их свойства.	2	2
n na councida.	Основания, классификация и их свойства.	2	2
	Соли, классификация и их свойства	2	2
	Оксиды, классификация и их свойства	2	2
	Практическая работа: Химические свойства кислот и оснований.	2	3
	Практическая работа: Химические свойства солей.	2	3
	Контрольная работа по разделу «Классификация неорганических соединений»	2	3
	Содержание учебного материала:	16	
	Классификация химических реакций.	2	2
Тема б. Химические реакции.	Практическая работа: Термохимические реакции. Вычисление теплового эффекта химических реакций.	2	3
	Окислительно-восстановительная реакция.	2	2
	Практическая работа: Составление уравнений ОВР.	2	3

	Скорость химических реакций.	2	2
	Практическая работа: Зависимость скорости химических реакций от различных факторов.	2	3
	Обратимость химических реакций.	2	2
	Понятие об электролизе. Гальванопластика.	2	2
	Содержание учебного материала	16	
Тема 7. Металлы и	Общая характеристика металлов.	2	2
неметаллы.	Способы получения металлов. Понятие о металлургии.	2	2
	Коррозия металлов, классификация коррозии металлов.	2	2
	Практическая работа: Получение, собирание и распознавание газов. Решение экспериментальных задач	2	3
	Общая характеристика неметаллов.	2	2
	Силикатная промышленность. Производство серной кислоты.	2	2
	Практическая работа: Химические свойства металлов и неметаллов.	2	3
	Контрольная работа по разделу «Металла и неметаллы».	2	3

	3 семестр	34	
	Раздел 2. Органическая химия	34	
Тема 8. Основные понятия	Содержание учебного материала:	4	
органической химии и	Предмет органической химии. Теория А. М. Бутлерова.	2	2
теория строения органических соединений.	Классификация органических веществ и реакций в органической химии. Контрольная работа.	2	2
	Содержание учебного материала:	12	
Тема 9. Углеводороды и их природные источники.	Алканы и их строение, свойства, применение.	2	2
npnpvanziv nerv minim	Алкены и их строение, свойства, применение.	2	2
	Диены и каучуки и их строение, свойства, применение.	2	2
	Алкины и их строение, свойства, применение.	2	2
	Арены. Природные источники углеводородов. Контрольная работа.	2	3
	Практическая работа. Решение задач по данному разделу.	2	2
Тема 10.	Содержание учебного материала:	10	
Кислородсодержащие органические соединения.	Спирты и их строение, свойства, применение. Фенол.	2	2
	Альдегиды и их строение, свойства, применение.	2	2
	Карбоновые кислоты и их строение, свойства, применение.	2	2
	Сложные эфиры. Жиры. Углеводы.	2	2
	Практическая работа: Химические свойства кислородсодержащих соединений.	2	3

Тема 11.	Содержание учебного материала:	6	5
	Классификация и номенклатура аминов, аминокислот, белков.	2	2
Азотсодержащие органические соединения. Полимеры.	Практическая работа: Химические свойства аминов, аминокислот и белков.	2	3
	Практическая работа: Получение полимеров и волокон.	2	3
Зачёт		2	3
Итого		144	

7. УСЛОВИЯ РЕАЛИЗАЦИИ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

7.1 Материально-техническое обеспечение

Программа учебной дисциплины реализуется в кабинете «Химия»

Оборудование кабинета:

- посадочные места 30;
- рабочее место преподавателя;

Технические средства обучения:

- компьютер
- мультимедиапроектор
- экран
- виртуальная лаборатория

7.2 Информационное обеспечение обучения

Основные источники:

Габриелян О. С., Остроумов И. Г. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования. — М., 2018.

Габриелян О. С. Химия-10: учебник для общеобразовательных учреждений. Базовый уровень. - М.: Дрофа, 2017.

Габриелян О. С. Химия-11 учебник для общеобразовательных учреждений. Базовый уровень. - М.: Дрофа, 2017.

Дополнительные источники:

 Γ .Е. Рудзитис, Φ . Γ . Φ ельдман «Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред.проф. образования. — М., 2014.

Для преподавателей

Габриелян О.С. Химия для преподавателя: учебно-методическое пособие / О.С.

Габриелян, Г.Г. Лысова – М., 2010.

Габриелян О.С. Настольная книга учителя химии: 10 класс / О.С. Габриелян, И.Г.

Остроумов – М., 2009.

Габриелян О.С. Настольная книга учителя химии: 11 класс: в 2 ч. / О.С. Га-бриелян, Г.Г.

Лысова, А.Г. Введенская – М., 2009.

Интернет-ресурсы:

www. enauki. ru (интернет-издание для учителей «Естественные науки».

www.pvg.mk.ru (илимпиада «Покори Воробьевы горы»).

www.hemi.wallst.ru (Образовательный сайт для школьников «Химия»).

www.hvsh.ru (журнал «Химия в школе»).

8. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляются преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий.

Результаты обучения (освоенные умения, усвоенные знания)

Формы и методы контроля и оценки результатов обучения

Знать:

- периодический закон Д.И. Менделеева в свете учения о строении атома, принципы построения периодической системы элементов;
- общую характеристику s-, p-, d-элементов, их биологическую роль и применение в медицине;
- важнейшие виды химической связи и механизм их образования;
- основные положения теории растворов и электролитической диссоциации;
- протолитическую теорию кислот и оснований;
- коллигативные свойства растворов;
- способы выражения концентрации растворов;
- алгоритмы решения задач на растворы;
- сущность гидролиза солей;
- основные классы органических соединений, их строение, свойства, получение и применение;
- все виды изомерии

- оценка результатов устных опросов, тестирования;
- проверка выполнения практических работ;
- -наблюдение за деятельностью обучающихся в ходе выполнения практических работ;
- оценка решения задач;
- зачет.

Уметь:

- составлять электронные и графические формулы строения электронных оболочек атомов;
- прогнозировать химические свойства элементов, исходя из их положения в периодической системе и электронного строения;
- составлять химические формулы соединений в соответствии со степенью окисления химических элементов;
- составлять уравнения реакций ионного обмена в молекулярном и ионном виде;
- решать задачи на растворы;
- уравнивать окислительно-восстановительные реакции методом электронного баланса;
- составлять уравнения гидролиза солей, определять кислотность среды;
- составлять названия соединений по систематической номенклатуре;
- составлять схемы реакции, характеризующие свойства органических соединений.

оценка результатов устных опросов, тестирования;

- проверка выполнения практических работ;
- -наблюдение за деятельностью обучающихся в ходе выполнения практических работ;
- оценка решения задач;
- зачет